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Abstract
Quantifying phytoplankton composition is critical to predicting marine ecosystem structure and function.

DNA meta-barcoding and high-performance liquid chromatography (HPLC) pigment analysis are two widely
used methods for assessing phytoplankton composition; however, comparing their performance has been done
only rarely. Here, we integrate DNA meta-barcoding and HPLC pigment observations to determine eukaryotic
phytoplankton composition in the Santa Barbara Channel, California. We find that both methods identify the
same four dominant eukaryotic phytoplankton taxa (diatoms, dinoflagellates, chlorophytes, and
prymnesiophytes), but inter- and intra-lineage variability in biomarker pigmentation (associated with both a
lack of taxonomic specificity of biomarker pigments and intrinsic differences in accessory pigmentation) drives
substantial disagreement between the methods. Covariation network analysis circumvents this disagreement
and reveals that diverse assemblages of phytoplankton and other protists covary with distinct suites of bio-
marker pigments. Our results highlight the strengths and weaknesses of each method in characterizing phyto-
plankton composition and reveal novel insights into phytoplankton physiology that could only be gained by
integrating the two methods. Finally, we suggest a path to monitor eukaryotic plankton communities on
unprecedented spatiotemporal scales based on the covariation of unique phytoplankton and protistan assem-
blages with remotely sensible phytoplankton pigment concentrations.

Phytoplankton production fuels marine food webs and the
biological carbon pump (Ryther 1969; Guidi et al. 2016). Phyto-
plankton composition determines the efficiency of the biologi-
cal carbon pump and of the transfer of phytoplankton
production to higher trophic levels, dictating marine ecosystem
structure and function (Guidi et al. 2016; Lin et al. 2017). Thus,
quantifying phytoplankton composition (here, meaning relative

abundances or biomass contributions) and/or concentrations of
phytoplankton taxa represents a critical step in efforts to under-
stand and predict marine ecosystem structure and function.

Quantifying phytoplankton composition is difficult due to
the high diversity of phytoplankton (De Vargas et al. 2015).
Methods available for quantifying phytoplankton composi-
tion include high-performance liquid chromatography (HPLC)
pigment analysis, amplicon sequencing of DNA “barcode”
genes (DNA meta-barcoding), other “meta-omics” techniques
(meta-transcriptomics, etc.), flow cytometry, and microscopic
and/or image-based cell identification and enumeration
(Lombard et al. 2019). Bio-optical and ocean color remote
sensing approaches for estimating phytoplankton composi-
tion have been proposed but rely on one of these methods for
formulation and validation (Uitz et al. 2015; Chase
et al. 2017). Both HPLC pigment and DNA meta-barcoding
methods entail relatively efficient sample analysis procedures
and are widely applied to assess phytoplankton composition
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(Lima-Mendez et al. 2015; Kramer and Siegel 2019). Recent
work suggests that HPLC and DNA meta-barcoding analyses
provide estimates of phytoplankton composition that are
more comparable to one another than to other methods, in
part because they both allow sampling of a broad range of size
classes (Gong et al. 2020).

DNA meta-barcoding analysis results in a collection of
amplicon sequence variants (ASVs), which serve as proxies for
“species” in microbial ecology applications (Callahan
et al. 2016). Although the total sequence counts recovered
from a sample or sequencing run is constrained by sample
preparation and analysis procedures (Gloor et al. 2017), ASV
relative sequence abundances are often estimated by normaliz-
ing each ASV’s sequence counts to the total counts recovered
from each sample (De Vargas et al. 2015; Berdjeb et al. 2018).
Interpreting compositional (relative) data are difficult because
variability in a single ASV’s relative abundance can be driven
either by changes in the abundance of other ASVs in the com-
position, or by a change in the abundance of the ASV in ques-
tion (Aitchison 1982; Gloor et al. 2017). Analytical
uncertainty in DNA meta-barcoding estimates of phytoplank-
ton composition is difficult to evaluate (Bradley et al. 2016;
Wear et al. 2018). However, recent work suggests rigorously
evaluated DNA meta-barcoding workflows provide reasonably
accurate and precise estimates of phytoplankton composition
(Catlett et al. 2020a; Yeh et al. 2021). Overall, these data offer
high taxonomic resolution of phytoplankton composition
and are increasingly used to assess the roles of phytoplankton
communities in marine ecosystems and biogeochemical cycles
(Guidi et al. 2016; Lin et al. 2017).

HPLC analysis quantifies the concentrations of a suite of
phytoplankton pigments, some of which are presumed to serve
as biomarkers for particular phytoplankton taxa (Mackey
et al. 1996; Jeffrey et al. 2011; Kramer and Siegel 2019). The pri-
mary weaknesses in HPLC pigment analysis are (1) limited tax-
onomic resolution (to approximately the class level; Mackey
et al. 1996; Kramer and Siegel 2019); (2) variability in pigment
concentrations independent from phytoplankton biomass due
to physiological status and other factors (Goericke and
Montoya 1998; Schlüter et al. 2000); and (3) lack of specificity
of commonly used biomarker pigments (Jeffrey et al. 2011).
Despite these drawbacks, HPLC sample analysis methods are
rigorously evaluated and standardized (Van Heukelem and
Thomas 2001), and direct links between phytoplankton pig-
ments and bio-optical properties provide a path to observe phy-
toplankton composition from satellite ocean color (Bricaud
et al. 2004; Chase et al. 2017). Biomarker pigment concentra-
tions can be transformed to compositions by normalizing to
the total chlorophyll a (TChla) concentration or the sum of all
biomarker pigment concentrations (Mackey et al. 1996; Vidussi
et al. 2001). Alternatively, phytoplankton pigment “communi-
ties” can be identified from pigment data based on the covaria-
tion of pigment concentrations with one another (Latasa and
Bidigare 1998; Catlett and Siegel 2018; Kramer and Siegel 2019).

Specific biomarker pigments can then be selected as representa-
tives of different phytoplankton assemblages, bio-optically
modeled with relatively high accuracy, and analyzed further to
determine oceanographic forcings of phytoplankton taxa on
large spatiotemporal scales (Catlett et al. 2021a). These analyses
are similar to those employed in recent studies that take a
systems-level approach to characterize covariation among
microbial ASVs using covariation networks (Lima-Mendez
et al. 2015; Berdjeb et al. 2018).

Given the numerous approaches for quantifying phyto-
plankton composition, research is needed to develop coherent
approaches for characterizing phytoplankton composition
across scales of space, time, and phytoplankton diversity.
Here, we integrate HPLC pigment and DNA meta-barcoding
phytoplankton composition and concentration estimates
using a large data set of concurrent observations from the
Santa Barbara Channel, California. Our results highlight the
strengths, weaknesses, and assumptions inherent in estimat-
ing phytoplankton composition and concentrations for each
method and demonstrate that integrating these methods pro-
vides novel insights. Finally, we suggest that characterizing
the plankton assemblages that covary with remotely sensible
phytoplankton pigments may offer a path to monitor eukary-
otic plankton assemblages on regional to global scales via sat-
ellite ocean color observations.

Methods
Overview of study site, sampling, and data availability

The Santa Barbara Channel (SBC) is a productive marine
ecosystem at the boundary of the California Current System
and Southern California Bight. Variability in SBC oceano-
graphic properties is dominated by the annual wind-driven
upwelling cycle, which is in turn modulated by remotely
forced climate oscillations (Catlett et al. 2021a). Diatoms dom-
inate the accumulation of phytoplankton biomass associated
with spring-time upwelling in the SBC, though other phyto-
plankton also respond positively to upwelling-induced nutri-
ent enrichment of the surface ocean (Taylor et al. 2015;
Catlett et al. 2021a). High concentrations of other phyto-
plankton, including dinoflagellates (Catlett et al. 2021a),
prymnesiophytes (Goodman et al. 2012), and chlorophytes
(Countway and Caron 2006), have also been observed in and
around the SBC.

The Plumes and Blooms project has sampled seven stations
on a cross-SBC transect approximately monthly since August
1996 (Catlett et al. 2021a). Here, we consider data obtained
from cruises conducted between March 2011 and September
2014 where concurrent observations of HPLC pigment con-
centrations and DNA meta-barcoding of the V9 hypervariable
region of the 18S small subunit rRNA gene (henceforth, 18S
rDNA) are available. Most of our analysis is focused on near-
surface samples (nominal depth 1 m), though we also consider
DNA meta-barcoding samples collected at depths of 30, 75,
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150, and 300 m from Sta. 4 in the center of the transect (only
surface samples are collected from the other stations). We sup-
plement our analysis with Plumes and Blooms oceanographic
observations including mixed layer depth and particulate
organic carbon (POC) concentrations, and satellite observa-
tions of photosynthetically available radiation (Supporting
Information Text S1). Methods used for sampling and analysis
of pigment and oceanographic data are available elsewhere
(Catlett et al. 2021a), described briefly in Supporting Informa-
tion Text S1, and data are available through the Environmen-
tal Data Initiative (Catlett et al. 2020b). Amplicon sequencing
and bioinformatic analysis follow methods described previ-
ously (Catlett et al. 2020a) and are detailed in Supporting
Information Text S1. Raw sequence data are available in the
National Center for Biotechnology Information’s Sequence
Read Archive (accession number PRJNA532583), and curated
data are available through the Environmental Data Initiative
(Catlett et al. 2022).

DNA meta-barcoding taxonomic assignments and data pre-
processing

Standard taxonomic assignment methods result in many
ASVs with low confidence or unknown taxonomic annotations
at ecologically meaningful taxonomic ranks (division, class,
and lower; see Catlett et al. 2020a and Supporting Information
Fig. S1). We implemented an ensemble taxonomic assignment
approach (ensembleTax R package v1.1.1; Catlett et al. 2021b)
with the goal of increasing the specificity of taxonomic assign-
ments for ASVs in our data set. Initial taxonomic assignments
were predicted with three widely used algorithms (Altschul
et al. 1990; Huson et al. 2007; Wang et al. 2007; Murali
et al. 2018) and both the Protistan Ribosomal Reference data-
base (v4.12.0; Guillou et al. 2012) and the Silva SSU reference
database (v138; Quast et al. 2012). Detailed descriptions of
methods used for ensemble assignments and data pre-
processing are available in Supporting Information Text S2.

All analyses presented here rely on a data set comprising
13,308 protistan ASVs derived from 345 discrete seawater sam-
ples and use the Protistan Ribosomal Reference database taxo-
nomic nomenclature. Sequencing depth ranged from 11,804
to 225,911 protistan sequence reads per sample. Sequence
counts of each protistan ASV were normalized to the total pro-
tistan sequence counts within each sample to determine ASV
relative sequence abundances. Where duplicate or triplicate
samples were available, mean relative sequence abundances
were computed. Most analyses consider a subset of 215 surface
samples, in which 6568 total protistan ASVs were detected.

Identification of phytoplankton ASVs
Phytoplankton ASVs must be identified accurately as their

misidentification will bias estimates of phytoplankton composi-
tion since the abundance of each ASV is dependent on the abun-
dances of all other ASVs in the composition. This is complicated
by the growing recognition of mixotrophy as a widespread

trophic strategy in marine protists (Mitra et al. 2016). Here, phy-
toplankton are defined as protistan taxa that are thought to
include only photoautotrophic and/or constitutive mixotrophic
representatives (possessing an inherent capacity to photosynthe-
size). We compiled a collection of taxonomic names with
corresponding trophic modes following the definitions of Mitra
et al. (2016) using several recent literature compilations and
searches of other refereed and non-refereed sources and identified
phytoplankton ASVs using their predicted taxonomic assign-
ments (Supporting Information Text S3; Files S1, S2; Figs. S2–S4).
Notably, ASVs with taxonomy assigned as unknown
Dinophyceae, Cryptophyta, or Haptophyta could not be unam-
biguously classified but are assumed to be phytoplankton in the
present analysis (Supporting Information Text S3).

Parallel analysis of concentrations and composition
Because HPLC pigment data are concentrations and DNA

meta-barcoding data are compositions, transforming one or both
data sets is required prior to integrating them. Methods for con-
straining pigment concentration data to compositions are imper-
fect (Irigoien et al. 2004; Catlett and Siegel 2018) and methods to
transform DNA meta-barcoding data to concentrations are less
widely used and require important assumptions. We thus per-
formed parallel analyses of phytoplankton composition and con-
centrations. We use ratios of “diagnostic pigments” to TChla as
pigment-based estimates of phytoplankton composition as they
are well correlated with other diagnostic pigment approaches for
estimating phytoplankton composition and require minimal
assumptions (Vidussi et al. 2001; Supporting Information Fig. S5).
The seven diagnostic pigments include fucoxanthin (Fuco;
biomarker for diatoms), peridinin (Perid; dinoflagellates),
monovinyl chlorophyll b (MVChlb; chlorophytes), 190-
hexanoyloxyfucoxanthin (Hexfuco; prymnesiophytes),
alloxanthin (Allo; cryptophytes) 190-butanoyloxyfucoxanthin
(Butfuco; pelagophytes), and zeaxanthin (Zea; cyanobacteria)
(Vidussi et al. 2001). DNA meta-barcoding data were transformed
to concentrations by multiplying the relative abundances of all
protistan ASVs by concurrently determined POC concentrations,
providing estimates of the POC associated with each protistan ASV
in each sample (assumptions are detailed in the Discussion). Esti-
mates of POC associated with individual taxonomic groups are not
impacted by the phytoplankton identification procedure described
above (except forDinophyceae, Cryptophyta, and Haptophyta
ASVs; Supporting Information Text S3), though changes to the
phytoplankton ASV identification procedure will change composi-
tional estimates. Considering both phytoplankton composition
and concentration estimates thus provides two quasi-independent
analyses that will be shown to corroborate one another.

Statistical analyses
Known sources of uncertainty in HPLC pigment assess-

ments of phytoplankton composition and concentration
include physiological and inter- and intra-lineage variability
in biomarker pigmentation (Higgins et al. 2011). To evaluate
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the roles of these sources of error in disagreements in phyto-
plankton composition and concentration estimates, we per-
formed multiple linear regression analyses on each
phytoplankton type’s composition and concentration resid-
uals relative to the line of best fit determined by Model II lin-
ear regression. All predictor and response variables were z-
scored prior to regression analyses so that the magnitudes of
regression coefficients can be compared to assess their relative
importance.

We performed covariation network analysis to determine
the patterns of covariation among pigments and both phyto-
plankton and other protistan classes and ASVs observed via
DNA meta-barcoding. Covariation networks were constructed
and analyzed using the NetCoMi (Peschel et al. 2021; v1.0.2),
igraph (Csardi and Nepusz 2006; v1.2.6), and SPRING (Yoon
et al. 2019; v1.0.4) R packages. Networks were constructed
using the Semi-Parametric Rank-based approach for INference
in Graphical models (SPRING) method (Yoon et al. 2019). Net-
work inference with the SPRING method relies on a data-
driven optimization of a neighborhood selection approach
(Meinshausen and Bühlmann 2006; Yoon et al. 2019), an
approach that assumes a sparse network. Our results therefore
provide a conservative depiction of the number of associations
among pigments and ASVs or classes relative to Pearson
correlation-based approaches (Yoon et al. 2019).

We focus on networks constructed considering either class-
aggregated or ASV POC concentrations alongside pigment
concentrations due to the difficulties associated with robust
inference of covariation using compositional data (Yoon
et al. 2019). Compositional networks considering either class-
aggregated or ASV composition and pigment ratios are
included in Supporting Information (Fig. S11) and broadly
support the associations observed in concentration networks.
Both phytoplankton and other protistan ASVs and classes
were included in all networks to determine the phytoplankton
assemblages covarying with each pigment, as well as to assess
the potential to draw inferences on protistan assemblages
more broadly from pigment observations. To maintain consis-
tency with the phytoplankton-specific analyses, phytoplank-
ton and other protists were treated as independent
compositions. Where a class included both phytoplankton
and other protistan ASVs, the ASVs were separated according
to their putative phytoplankton assignments and the prefix
“phyto-” is used to distinguish phytoplanktonic ASVs in these
classes. Only classes or ASVs found at > 1% relative abundance
in at least one sample in their respective compositions
were considered in network analyses. Compositions of phyto-
plankton pigments, phytoplankton ASVs and other protistan
ASVs were independently transformed (following Tipton
et al. 2018) using the modified centered log-ratio transforma-
tion (Yoon et al. 2019) prior to network construction. All ana-
lyses presented here consider networks with negative edges
(edges indicate significant associations determined by the
SPRING method) removed. A community detection algorithm

that identifies communities by maximizing within-
community interactions and minimizing inter-community
interactions (Clauset et al. 2004) was applied to the networks.
Clauset et al. (2004) suggest modularity scores > 0.3 indicate
“significant” community structure is resolvable from a
network.

Results
Dominant phytoplankton taxa in the SBC

Both HPLC and DNA meta-barcoding analysis indicated
that the dominant eukaryotic phytoplankton in the SBC are
diatoms (Bacillariophyceae), dinoflagellates (Dinophyceae),
prymnesiophytes (Prymnesiophyceae), and chlorophytes
(Chlorophyta) (Fig. 1). The highest median pigment concen-
trations and ratios to TChla were observed for Fuco (diatom
biomarker), Hexfuco (prymnesiophytes), and MVChlb
(chlorophytes), respectively. The dinoflagellate biomarker pig-
ment, Perid, had the 4th highest median ratio to TChla, and
the 5th highest median concentration behind the putative cya-
nobacteria biomarker pigment, Zea. In the DNA meta-
barcoding data, dinoflagellates had the highest median com-
position and concentration, followed closely by diatoms, and
then prymnesiophytes and Mamiellophyceae (a class of
chlorophytes). Although all classes of Chlorophyta ASVs
cumulatively had higher median composition and concentra-
tion (7.89% and 9.38 μg L�1) than Prymnesiophyceae ASVs
(4.30% and 5.75 μg L�1), the prymnesiophytes comprised a
larger proportion of the community than any single class
within Chlorophyta. Substantial disagreement across the two
methods was found in comparisons of the concentrations and
compositions estimated for each of the dominant phytoplank-
ton taxa (Fig. 2). Although diatoms and chlorophytes showed
relatively strong correlations (r2 > 0.3, p < 0.001) for composi-
tion and concentration determinations across the two methods,
weaker correlations were observed for prymnesiophytes and
dinoflagellates (r2 ≤ 0.26; Fig. 2).

Predictor selection to assess sources of disagreement across
methods

To assess the contribution of physiological variability in
pigmentation to disagreements in phytoplankton composition
and concentration estimates across the two methods (Fig. 2),
we considered mixed layer depth as a correlate for phyto-
plankton physiological status since it is typically correlated
with other drivers of phytoplankton physiological variability
(temperature, recent light and nutrient availability; Behrenfeld
et al. 2005). Satellite observations of photosynthetically avail-
able radiation were also considered as a covariate of phyto-
plankton photophysiological variability, but were not
significant in predicting most phytoplankton types’ residuals.
Photosynthetically available radiation and mixed layer depth
were significantly, though weakly correlated (r = �0.32,
p < 0.001), but in most regression models, this weak
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collinearity did not substantially impact the values of regres-
sion coefficients (Table 1; Supporting Information Table S2).

Selection of predictors to estimate the contribution of
inter- and intra-lineage variability in biomarker pigment
expression was based on known ambiguities in biomarker pig-
mentation (Jeffrey et al. 2011) and exploratory analyses
(Supporting Information Figs. S6–S9). Several Dinophyceae
species express the diatom biomarker pigment, Fuco, rather
than the typical dinoflagellate biomarker pigment Perid
(Zapata et al. 2012). Diatom composition and concentration
residuals were correlated with the cumulative composition
and concentration of Dinophyceae ASVs (r = �0.58 and

�0.31, respectively; p < 0.001), with most of the variability
explained by three Dinophyceae ASVs with compositions that
were correlated (r < �0.4, p < 0.001 for each ASV) with diatom
composition residuals. BLASTN searches of these putative
Fuco-containing dinoflagellate ASV sequences against the
NCBI nucleotide database showed that they were perfect
matches to 18S rDNA sequences derived from known Fuco-
containing dinoflagellate genera (though there is intra-genus
variability in biomarker pigmentation; Supporting Informa-
tion Table S1). The compositions and concentrations of the
putative Fuco-containing dinoflagellate ASVs were signifi-
cantly correlated with Dinophyceae composition and
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Fig. 1. Distributions of (A) phytoplankton biomarker pigment concentrations, (B) phytoplankton class POC concentrations, (C) biomarker pigment
ratios to TChla, and (D) phytoplankton class relative abundances observed by (A,C) HPLC pigment and (B,D) DNA meta-barcoding analysis. (B,D) Only
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Fig. 2. Comparisons of HPLC pigment and DNA meta-barcoding (A,C,E,G) concentration and (B,D,F,H) composition estimates for (A,B) diatoms, (C,D)
dinoflagellates, (E,F) chlorophytes, and (G,H) prymnesiophytes. Values of squared Pearson correlation coefficients for each relationship are included in
each panel. Lines of best fit are shown in black and were determined by Model II (reduced major axis) regression. In (G,H), red points show two outlier
observations (see the main text). Rel. Abun., relative abundance.
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concentration residuals (r = 0.64 and 0.69, respectively;
p < 0.001). Similarly, two putative Perid-containing
Dinophyceae ASVs were identified as those with compositions
most strongly correlated (r < �0.4, p < 0.001) with
Dinophyceae composition residuals. Again, BLASTN searches
of these ASV sequences against the NCBI nucleotide database
suggested they were derived from a Perid-containing genus
(Tripos; Supporting Information Table S1).

Investigations of the potential for intra-lineage variability in
biomarker pigmentation to contribute to error in pigment-based
taxon concentrations and compositions showed that Chlo-
rophyta composition and concentration residuals varied systemat-
ically with the dominant Chlorophyta class within each sample
(Supporting Information Fig. S7). We grouped chlorophyte classes
into three “ecotypes” based on these systematic differences. Eco-
type 1 consisted of Chlorophyceae, Chlorodendrophyceae, Chlo-
ropicophyceae, and Trebouxiophyceae (classes whose dominance
was associated with positive residual values), ecotype 2 included
Mammiellophyceae, Prasino-Clade-9, and unknown Chlorophyta
(associated with residuals with a distribution centered near 0),
and ecotype 3 included Pyramimonadales (associated with nega-
tive residual values). Further analysis showed the concentration
and composition of ecotype 1 exhibited a strong linear relation-
ship with Chlorophyta concentration and composition residuals,
while the concentrations and compositions of ecotypes 2 and
3 showed weaker systematic variations with Chlorophyta concen-
tration and composition residuals (Supporting Information
Fig. S8).

Systematic variation of prymnesiophyte concentration and
composition residuals with the dominant Prymnesiophyceae
order was not observed (Supporting Information Fig. S7).
However, two outliers were identified in comparisons of
Prymnesiophyceae concentrations and compositions across
the two methods (shown in red in Fig. 2G,H). These outliers
originated from a single cruise in April 2011, and were domi-
nated by an ASV assigned as Phaeocystis globosa that was
highly correlated with prymnesiophyte composition and con-
centration residuals (Supporting Information Fig. S9; r = 0.72
and 0.73 for compositions and concentrations, respectively;
p < 0.001). BLASTN searches against the NCBI nucleotide data-
base showed this ASV sequence was a perfect match to 18S
rDNA sequences from several strains of P. globosa, corroborat-
ing the ensemble taxonomic assignment.

Multiple linear regression analysis to characterize sources
of disagreement across methods

Table 1 shows multiple linear regression statistics deter-
mined for predictions of concentration and composition resid-
uals based on linear combinations of the presumed
physiological correlates (mixed layer depth and photosynthet-
ically available radiation) and the various sources of inter- and
intra-lineage variability in biomarker pigmentation identified
above. Additional multiple linear regression results are
included in Supporting Information Table S2 to support theT
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conclusions drawn here. Mixed layer depth was a significant
predictor of the concentration residuals of all four dominant
phytoplankton taxa (Table 1). Negative mixed layer depth
coefficient values in all concentration residual regression
models indicated that a deeper mixed layer was associated
with higher pigment : POC ratios as expected. Mixed layer
depth was insignificant in predicting the composition resid-
uals of diatoms and dinoflagellates but significant in
predicting the composition residuals of chlorophytes and
prymnesiophytes, though R2 values only decreased by 0.02
when mixed layer depth was excluded from these models
(Supporting Information Table S2). Photosynthetically avail-
able radiation was a significant predictor of prymnesiophyte
concentration and composition residuals, with positive regres-
sion coefficient values indicating a decrease in the Hexfuco to
Prymnesiophyceae POC ratio with increasing irradiance. Pho-
tosynthetically available radiation was also a significant pre-
dictor of diatom composition residuals, though removing
photosynthetically available radiation from these regression
models again resulted in a minor (3%) decrease in R2 values
(Supporting Information Table S2). The reduced importance
of physiological correlates in predicting phytoplankton com-
position residuals implies similarities in variations in the
expression of TChla and biomarker pigments in response to
environmental stimuli across most of the dominant
phytoplankton taxa.

Sources of inter-lineage (for diatoms) and intra-lineage (for
all other taxa) variability in biomarker pigmentation had stan-
dardized regression coefficient values that were more than
twofold higher in magnitude than the presumed physiological
correlates (mixed layer depth and photosynthetically available
radiation) in all regression models except the prymnesiophyte
composition residual model. As expected, R2 values were gen-
erally lower when predicting residuals where a taxon’s
pigment-based concentrations and compositions were better-
correlated with DNA meta-barcoding concentrations and com-
positions (Table 1; Fig. 2). Regression models that predicted
diatom concentration residuals using mixed layer depth and
the summed concentration of three putative Fuco-containing
dinoflagellate ASVs (Supporting Information Table S1) yielded
R2 values of 0.34 (Table 1). An R2 value of 0.36 was found
when predicting diatom composition residuals with only the
composition of three putative Fuco-containing dinoflagellate
ASVs. For Dinophyceae concentration residuals, R2 values of
0.75 were obtained in a regression model including mixed
layer depth and the concentrations of both putative Fuco- and
Perid-containing dinoflagellates (Table 1). Like diatom concen-
tration residuals, putative Fuco- and Perid-containing dinofla-
gellate concentrations had substantially larger standardized
regression coefficient values than mixed layer depth. Models
including the composition of putative Fuco- and Perid-
containing dinoflagellates also fit dinoflagellate composition
residuals well (R2 = 0.56; Table 1; Supporting Information
Fig. S10).

Models that predicted Chlorophyta concentration and
composition residuals from the cumulative concentration and
composition of each of the three Chlorophyta ecotypes
achieved R2 values of 0.55 and 0.52, respectively (models used
for concentration residuals also included mixed layer depth;
Table 1). Furthermore, the composition and concentration of
each Chlorophyta ecotype was significant in predicting Chlo-
rophyta composition and concentration residuals, with coeffi-
cients following the trends expected based on Supporting
Information Figs. S7, S8. Chlorophyta ecotype 1 was associ-
ated with regression coefficient values with the highest magni-
tude in both models. Models including the two physiological
correlates along with the concentration or composition of the
putative P. globosa ASV predicted prymnesiophyte concentra-
tion and composition residuals well (R2 = 0.72 and 0.62,
respectively).

Network analysis to characterize covariation of
phytoplankton classes and ASVs with biomarker pigment
concentrations

We first consider phytoplankton subnetworks (a subset of
the network with non-phytoplanktonic members removed)
including only the seven diagnostic pigments and phyto-
plankton class or ASV concentrations (Fig. 3; Supporting Infor-
mation Fig. S11) and expand our discussion to consider
networks including both phytoplankton and other protistan
classes and ASVs below (see “Discussion” section; Fig. 4;
Supporting Information Figs. S14–S16). Prior to removal of
negative edges, 94.5% and 74.4% of edges represented positive
associations in subnetworks including phytoplankton classes
or ASVs, respectively, alongside biomarker pigment concentra-
tions. Following removal of negative edges, both phytoplank-
ton class and ASV subnetworks remained fully connected as
all biomarker pigments and phytoplankton classes or ASVs
were linked either directly by positive edges shared with one
another, or indirectly through positive edges shared with com-
mon nodes. A modularity score of 0.44 was found for the phy-
toplankton pigment and class subnetwork.

Figure 3A shows the phytoplankton class and biomarker pig-
ment concentration subnetwork. In general, biomarker pigment
concentrations covaried with diverse phytoplankton classes. As
expected, phytoplankton classes tended to share a positive edge
and community membership with their corresponding bio-
marker pigments (Pelagophyceae with Butfuco, Mamiellophyceae
and Pyramimonadales with MVChlb, Bacillariophyta with Fuco,
Cryptophyceae with Allo, and Dinophyceae with Perid). The
exception to this pattern was Prymnesiophyceae, which were
found in the same community as, but did not share a positive
edge, with Hexfuco. Dinophyceae shared positive edges with
both Fuco and Perid, but only shared community membership
with Fuco. Interestingly, Zea, rather than the typical chlorophyte
biomarker MVChlb, shared a positive edge with the Chlorophyta
classes Trebouxiophyceae and Chloropicophyceae, and was
found in the same community as Chlorodendrophyceae and
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Fig. 3. Associations among phytoplankton biomarker pigment concentrations and phytoplanktonic classes and ASVs determined from the covariation
network including both phytoplankton and other protists. (A) The phytoplankton class (circles) and biomarker pigment (squares) concentration sub-
network. Nodes correspond to individual phytoplankton classes or biomarker pigment concentrations and are colored according to their community
membership determined by an agglomerative community detection algorithm (Clauset et al. 2004). Edge thickness indicates the relative strength of asso-
ciation between nodes. All edges show positive associations. (B) Shows positive associations between the seven diagnostic pigment concentrations and
phytoplankton ASVs concentrations. MOCH, marine ochrophytes; unk., unknown.

Catlett et al. Phytoplankton pigments and meta-barcodes

369



Chlorophyceae. These classes comprised Chlorophyta ecotype
1 defined above, which was associated with consistent underesti-
mation of Chlorophyta concentrations and compositions from
HPLC pigment data (Table 1; Supporting Information
Figs. S7, S8).

Five communities of phytoplankton pigments and classes
were identified from the phytoplankton subnetwork (Fig. 3A),
four of which included at least one pigment. Associations
among the pigments mirrored patterns of covariation in the
SBC identified previously (Catlett and Siegel 2018), with Fuco
and Zea each found in distinct communities from all other
biomarker pigments. Strong covariation and shared commu-
nity membership were found between the chlorophyte and
cryptophyte biomarker pigments (MVChlb and Allo) and the
prymnesiophyte and pelagophyte biomarker pigments
(Hexfuco and Butfuco; Fig. 3A). Unexpectedly, Perid was
found in the same community as MVChlb and Allo. Four phy-
toplankton classes neither shared an edge nor community
membership with a pigment.

Figure 3B shows a chord diagram (Gu et al. 2014) illustrat-
ing the direct associations between phytoplankton pigments
and ASVs. A diverse assemblage of phytoplankton ASVs co-
varied with each pigment. The largest proportion of ASVs
associated with each pigment often belonged to the phyto-
plankton class for which the pigment is the corresponding

biomarker. For example, Fuco shared positive edges with seven
Bacillariophyta ASVs, two Dinophyceae ASVs, and one
Prymnesiophyceae ASV, while Perid shared positive edges with
eight Dinophyceae ASVs, three Bacillariophyta ASVs, and one
Pyramimonadales ASV. Similarly, MVChlb shared positive edges
with five Chlorophyta ASVs (four of class Mamiellophyceae and
one of Pyramimonadales), and two ASVs representative of
Dinophyceae and Dictyochophyceae. Unexpectedly, Butfuco
and Hexfuco shared positive edges with 1–3 ASVs from a diverse
array of phytoplankton classes. Nearly half (6 of 13) of the posi-
tive edges between Allo and phytoplankton ASVs were associated
with Bacillariophyceae ASVs rather than Cryptophyceae ASVs.

Four communities were identified from the pigment and
ASV concentration network (Fig. 4). One community included
Fuco, the other six pigments were found in a 2nd community,
and two communities did not include a pigment (henceforth
Communities 1 and 2). In total, 176 of 313 total phytoplank-
ton ASVs included in network analyses shared community
membership with a biomarker pigment, with 78 ASVs found
in the Fuco community and 98 ASVs found in the community
with all other pigments. As expected, the Fuco community
was dominated by Bacillariophyta ASVs and had the lowest
mean composition of Prymnesiophyceae, Chlorophyta, and
diverse other phytoplankton ASVs across the four communi-
ties. Mean composition of the community including the other

Community 1 Community 2

Fuco Other biomarker pigments

Bacillariophyta
Phyto-Dinophyceae
Chlorophyta
Prymnesiophyceae
Other Phytoplankton

Fig. 4. Mean composition of phytoplankton ASVs found within the four communities identified by the community detection algorithm (Clauset
et al. 2004). Communities 1 and 2 do not include any of the seven pigments considered in network analysis. “Other Phytoplankton” includes ASVs repre-
sentative of Euglenozoa, Chrysophyceae, Dictyophyceae, Cryptophyceae, Raphidophyceae, Chlorarachniophyceae, Pelagophyceae, and MOCH
(a phylogenetically distinct lineage of marine ochrophytes). Fuco, fucoxanthin; MOCH, marine ochrophytes.
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six pigments was dominated by Dinophyceae ASVs, had rela-
tively high contributions of Prymnesiophyceae, Chlorophyta,
and diverse other phytoplankton ASVs, and had the lowest
diatom contributions of any of the four communities. One of
the communities that lacked a pigment (Community 2) had
similar mean composition to the community including six
pigments, while the other (Community 1) had an unusual
composition that included no Chlorophyta ASVs.

Discussion
Limitations and assumptions involved in DNA meta-
barcoding and HPLC pigment analysis of phytoplankton
composition

The application of HPLC pigment observations to quantify
phytoplankton composition and concentrations assumes that
physiological and inter- and intra-lineage sources of variability
in biomarker pigmentation are negligible. However, our results
show that this is not the case. We identified inter- and intra-
lineage variability in biomarker pigmentation as the largest
source of uncertainty in pigment estimates of the four domi-
nant phytoplankton taxa in the SBC (Fig. 2; Table 1;
Supporting Information Figs. S6–S10). Similar observations in
other systems suggest this may be a consistent issue in the
coastal ocean (Goericke and Montoya 1998; Irigoien
et al. 2004). Mixed layer depth and photosynthetically avail-
able radiation, used here as proxies for physiological variations
in pigment expression, were significant, though less impor-
tant, predictors of disagreement between pigment and DNA
meta-barcoding estimates of concentrations and composition
for this highly productive, coastal site (Fig. 2; Table 1).

Many assumptions are required to estimate phytoplankton
concentration and composition with DNA meta-barcoding.
DNA meta-barcoding is assumed to provide precise and accu-
rate estimates of phytoplankton composition in all studies
where these data are treated quantitatively, though evalua-
tions of uncertainty in DNA meta-barcoding workflows are dif-
ficult and rarely performed. Recent attempts to validate these
methods suggest that DNA meta-barcoding achieves precision
comparable to HPLC pigment analysis (Catlett et al. 2020a;
Yeh et al. 2021). Our finding that inter- and intra-lineage vari-
ability in pigmentation is the dominant source of disagree-
ment in pigment and DNA meta-barcoding estimates of
phytoplankton composition (Figs. 1, 2; Table 1; Supporting
Information Figs. S6–S10) further supports the use of DNA
meta-barcoding as a method with comparable (or greater)
accuracy and precision to other accepted methods.

A major limitation of DNA meta-barcoding is the
compositionality (relative abundance) constraint (Gloor
et al. 2017; Lin et al. 2019). To integrate DNA meta-barcoding
with other methods to quantify phytoplankton composition,
this constraint must be addressed either with robust identifica-
tion of phytoplankton ASVs, or with a transformation of ASV
compositions to concentrations. Both were performed here

and require assumptions. Overall, our analysis shows that
phytoplankton ASV identification is complicated by the preva-
lence of mixotrophy in marine protists (Mitra et al. 2016)
combined with limited phylogenetic resolution of short meta-
barcode amplicons and inadequate taxonomy prediction
methods (Supporting Information Table S1; Figs. S1, S2). Fur-
thermore, many of the putative trophic mode assignments
compiled here rely on the assumption that taxonomic groups
share common phenotypes (Adl et al. 2019). One example
where this assumption is not satisfied is among the
Dinophyceae (Adl et al. 2019). Here, limited ability to assign
Dinophyceae ASVs to trophic groups necessitated classifying
unknown Dinophyceae ASVs as phytoplankton; however, our
ability to explain most of the disagreement in Dinophyceae
concentration and composition estimates across the two
methods demonstrates that this assumption is valid for this
data set (Fig. 2; Supporting Information Table S1; Figs. S3, S4).
The abundance of unknown Dinophyceae ASVs in our data
also highlights the limited resolution of short amplicons and
standard taxonomic assignments. This problem persisted after
implementing ensemble methods (Catlett et al. 2021b) that
increase the specificity of ASV taxonomic assignments (likely
at the expense of increased false-positive annotations;
Supporting Information Fig. S1; Murali et al. 2018; Catlett
et al. 2021b). For example, one of the putative Fuco-
containing dinoflagellate ASVs identified here (sv8) was classi-
fied as unknown Dinophyceae and was a perfect match to rep-
resentatives from several dinoflagellate genera, only some of
which express Fuco (Supporting Information Table S1). This
problem is partially attributable to the limited taxonomic reso-
lution of short amplicons like the 18S-V9 amplicon considered
here, though some studies suggest analysis of longer
amplicons results in less accurate composition estimates
(Bradley et al. 2016).

To circumvent the compositionality constraint in DNA
meta-barcoding data, we scaled protistan relative abundances
to concurrent observations of POC concentrations to estimate
ASV and group concentrations. This approach relies on two
key assumptions: that variability in POC concentrations is
directly proportional to variability in protist community bio-
mass and that variability in protistan 18S rDNA copy number
scales with cell biomass. The 1st assumption is specific to our
analyses that focus on characterizing variability in (rather
than the magnitude of) taxon POC concentrations. In the
SBC, relatively strong covariation between monovinyl Chl
a and POC concentrations, in conjunction with an absence of
covariation of cyanobacterial pigments with POC (Supporting
Information Fig. S12), suggest that cyanobacterial contribu-
tions to POC variability are negligible. Free-living bacter-
ioplankton biomass contributions to total POC are also
negligible (mean = 4.8%, standard deviation = 2.6%) in this
data set (Supporting Information Text S4; Table S3). However,
the significance of detrital and protist-associated prokaryotic
contributions to POC variability, as well as variability in the
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proportion of DNA-containing detritus of protistan origin,
remains uncertain in most marine systems. Differences in fil-
ter pore sizes used here for protistan DNA meta-barcoding
(1.2 μm) and POC analysis (0.7 μm nominal pore size) intro-
duce further complications. The 2nd assumption is supported
by the well-documented correlations between 18S rDNA copy
number and cell size and biovolume (Zhu et al. 2005; Godhe
et al. 2008; De Vargas et al. 2015), and between cell biovolume
and carbon biomass (Menden-Deuer and Lessard 2000), across
diverse marine protist lineages. The agreement observed with
HPLC pigment methods after accounting for known sources
of error in pigment composition and concentration estimates
indicates that the POC-scaling of protistan relative abun-
dances is appropriate for the analyses performed here, though
remaining disagreements across the methods may be attrib-
uted to error introduced by this scaling. Further study should
be devoted to validating this approach against internal stan-
dard methods (Lin et al. 2019). Overall, integrating HPLC pig-
ment and DNA meta-barcoding analysis allowed us to identify
weaknesses in HPLC pigment phytoplankton composition
estimates and provided partial validation for our treatment of
DNA meta-barcoding data.

Integrating HPLC pigment and DNA meta-barcoding
analysis provides novel insights into phytoplankton
physiology and ecology

We observed that both inter- and intra-lineage variability
in pigment expression and variability in physiological status
are significant sources of error in HPLC estimates of phyto-
plankton concentration and composition in the SBC (Fig. 2;
Table 1; Supporting Information Figs. S6–S10). Intra-lineage
variability in pigment expression in smaller sized phytoplank-
ton including prymnesiophytes and chlorophytes has not
been previously observed in studies that integrate HPLC and
microscopic observations (Irigoien et al. 2004). Here, we con-
textualize our observations of physiological and inter- and
intra-lineage variability in pigmentation, and in turn, demon-
strate that integrating pigment and DNA meta-barcoding
observations provides novel insights into phytoplankton
physiology and ecology.

Inter-lineage variability in biomarker pigmentation was the
primary source of error in diatom concentration estimates
from pigments, while intra-lineage variability led to uncer-
tainty in estimated concentrations and compositions of dino-
flagellates, chlorophytes, and prymnesiophytes (Fig. 2;
Table 1). Our results suggest that in the SBC, Fuco-containing
dinoflagellates (Supporting Information Table S1) often lead
to an over-estimation of diatom concentrations and composi-
tions and an underestimation of dinoflagellate concentrations
and compositions with pigment methods (Fig. 2; Table 1;
Supporting Information Fig. S6). Some of the putative Fuco-
containing genera identified here (e.g., Karenia; Supporting
Information Table S1) have not been observed previously in
the SBC, although observations of adjacent waters have

detected and noted high concentrations of some Gymnodinium
species (Cullen et al. 1982). In network analyses (Figs. 3, 4),
Fuco- and Perid-containing dinoflagellate ASVs (Supporting
Information Table S1) were either directly associated, or
shared community membership, with their putative bio-
marker pigments. Additional phytoplanktonic dinoflagellate
ASVs were directly associated with Perid, including ASVs
assigned to genera known to express Perid (e.g., Alexandrium,
Heterocapsa; Zapata et al. 2012).

Intra-lineage variability in biomarker pigmentation was the
dominant source of uncertainty in HPLC pigment estimates of
chlorophyte and prymnesiophyte concentrations and compo-
sitions. Dominance by one of four classes within Chlorophyta
(Trebouxiophyceae, Chlorodendrophyceae, Chlorophyceae,
Chloropicophyceae, comprising ecotype 1) was associated
with consistent underestimation of Chlorophyta concentra-
tions and compositions with pigment methods (Fig. 2;
Table 1; Supporting Information Figs. S7, S8). Although repre-
sentatives of Chlorophyceae and Chlorodendrophyceae can
be associated with low MVChlb expression relative to other
Chlorophyta lineages (Higgins et al. 2011), recent studies sug-
gest that Chloropicophyceae species tend to exhibit
MVChlb : TChla ratios comparable to the dominant classes
included in ecotypes 2 and 3 defined above (Higgins
et al. 2011; Lopes dos Santos et al. 2016, 2017). Interestingly,
inspection of the concentration and composition distributions
of each ecotype according to the month sampled (Supporting
Information Fig. S13) showed that ecotype 1 tended to exhibit
the highest composition and concentrations during the sum-
mer (July and August), a time of year that is likely associated
with a reduction in pigment : carbon ratios due to high sur-
face irradiance and stratification and low surface nutrient con-
centrations in the SBC (Catlett et al. 2021a). Network analysis
also confirmed that both Mamiellophyceae and
Pyramimonadales (Chlorophyta ecotypes 2 and 3) covary with
MVChlb while Chlorophyta classes in ecotype 1 covary more
strongly with the photoprotective pigment, Zea (Fig. 3A).
Thus, the intra-Chlorophyta variability in MVChlb expression
is likely due to a combination of genetic and physiological
variability in pigment : biomass ratios.

A single putative P. globosa ASV (sv15) consistently led to
an underestimation of Prymnesiophyceae concentrations and
compositions with pigments (Table 1; Supporting Information
Fig. S10). Notably, this ASV was directly associated with Fuco
in the network analysis (Fig. 3B). P. globosa forms large
carbon-rich colonies and, when exposed to high irradiance,
expresses little to no Hexfuco but continues to express Fuco
(Schoemann et al. 2005). These observations are consistent
with the dependence of Prymnesiophyceae residuals on pho-
tosynthetically available radiation (Fig. 2; Table 1) and previ-
ous microscopy observations of Phaeocystis colonies in the
SBC (Goodman et al. 2012). Taken together, this suggests
P. globosa is an important colony-forming prymnesiophyte in
the SBC that is unaccounted for with pigment methods.
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In addition to inter- and intra-lineage variability in pigmen-
tation, mixed layer depth was a significant predictor of the
concentration residuals of all four of the dominant SBC phyto-
plankton types (Table 1). The negative coefficient values for
mixed layer depth in all concentration residual regression ana-
lyses indicate deeper mixed layers, which are typically associ-
ated with reduced irradiance and increased nutrient
availability, were associated with increased pigment : carbon
ratios. Interestingly, mixed layer depth was an insignificant
predictor of diatom and dinoflagellate composition residuals,
and was only associated with marginal increases (< 0.025) in
R2 values in prymnesiophyte and chlorophyte composition
residual regression models (Supporting Information Table S2).
Photosynthetically available radiation was a significant predic-
tor of prymnesiophyte composition and concentration resid-
uals but was insignificant in predicting most of the other
residuals considered here (Supporting Information Table S2),
possibly due to heightened sensitivity of P. globosa Hexfuco
expression to irradiance (Schoemann et al. 2005). Overall,
these correlates of phytoplankton physiological status were
more important predictors of concentration rather than com-
position residuals (Table 1; Supporting Information Table S2).
This implies that physiological responses to environmental
stimuli are a less important source of uncertainty in pigment-
based phytoplankton compositions relative to concentrations
as many taxa apparently alter their expression of TChla and
accessory pigments in similar ways. Altogether, these results
show that integration of DNA meta-barcoding and HPLC pig-
ment data provides novel insights into the physiological
responses of dominant phytoplankton types to environmental
stimuli.

Implications for satellite remote sensing of plankton
assemblages

Perhaps the greatest strength in HPLC pigment assessments
of phytoplankton composition is that pigments are bio-
optically active and have unique spectral absorption proper-
ties (Bricaud et al. 2004; Catlett and Siegel 2018). These rela-
tionships provide the motivation for recent attempts to
retrieve pigment concentrations and/or derived composition
indices from remotely sensible bio-optical properties (Uitz
et al. 2015; Chase et al. 2017). The forthcoming launch of the
NASA Plankton, Aerosols, Clouds, ocean Ecosystems mission
(Werdell et al. 2019) is expected to improve retrievals of pig-
ment concentrations from satellite ocean color observations
by improving resolution of small-scale phytoplankton absorp-
tion features (Uitz et al. 2015; Catlett and Siegel 2018). Our
results thus have important implications for future efforts to
observe and interpret phytoplankton composition via
remotely sensible phytoplankton pigment concentrations.

Despite uncertainty in pigment-based phytoplankton com-
position and concentration estimates (Fig. 2; Table 1), the net-
work analysis applied here revealed that diverse communities
of phytoplankton classes and ASVs are associated with

different biomarker pigments (Figs. 3, 4; Supporting Informa-
tion Fig. S11). This suggests that characterizing the assem-
blages of phytoplankton that covary with distinct suites of
biomarker pigments may offer an alternative path to observ-
ing phytoplankton composition from ocean color, circum-
venting the assumptions linking a pigment to compositions
or concentrations of a phytoplankton taxon. Although further
research is needed to evaluate whether the patterns observed
here can be extrapolated to other regions of the world’s
oceans, improved understanding of the ecological processes
that drive this covariability may provide a foundation for
future development of predictive models that estimate phyto-
plankton composition and concentrations from pigments and
other remotely sensible oceanographic properties. Further-
more, recent work documenting the numerous potential inter-
actions (inferred from covariability) within and between
phytoplankton, prokaryotic, protistan, and metazoan commu-
nities (Lima-Mendez et al. 2015; Berdjeb et al. 2018) high-
lights an additional benefit of this approach: it can be readily
extended to characterize the broader planktonic communities
that covary with distinct suites of biomarker pigments.

To illustrate this point, we performed a preliminary assess-
ment of the extent to which non-phytoplanktonic protists
detected in our DNA meta-barcoding data covaried with bio-
marker pigments by including non-phytoplanktonic classes
and ASVs in network analyses (see “Methods” section). Differ-
ent suites of pigments covaried with diverse and distinct
assemblages of putative microzooplankton grazers, parasites,
and other protists (Supporting Information Figs. S14–S16).
Although associations between pigments and non-
phytoplanktonic ASVs and classes were typically weaker than
those observed between pigments and phytoplankton, net-
works that included non-phytoplanktonic ASVs and classes
remained fully connected, meaning all pigments and protistan
classes or ASVs were either directly or indirectly (via an inter-
mediate node) associated with one another. Overall, this pre-
liminary analysis confirms that characterizing the
covariability among pigments and both phytoplankton and
protistan assemblages provides a path to link the structure of
protistan assemblages and ecosystems to satellite ocean color
observations.

However, several major limitations and questions and a
great deal of research remain to address this goal. Identifying
correlation, covariation, or co-presence is not equivalent to
directly verifying and identifying the nature, frequency, and
dynamics of associations and interactions among organisms
(Fuhrman et al. 2015). To remotely sense plankton assem-
blages, a predictive understanding of the processes governing
the associations and interactions among pigments and protis-
tan classes and ASVs observed here and elsewhere is required
(Lima-Mendez et al. 2015; Berdjeb et al. 2018). Application of
analyses like those performed here to a broader array of ocean
ecosystems and spatiotemporal scales will determine the
extent to which the associations among pigments and
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protistan classes and ASVs observed here vary. Although the
optimal observational scales of time, space, and plankton
diversity for predicting plankton composition and concentra-
tions from phytoplankton pigment concentrations remain
unknown, community-oriented analyses offer a path to
address these questions and may provide a path to improve
marine ecosystem monitoring from ocean color remote
sensing.
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